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Newtonian spherical gravitational collapse? 

E N Glass 
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 19 November 1979, in final form 10 March 1980 

Abstract. The spherical collapse of gas clouds is reduced to quadrature by specifying the 
mass function m ( I ,  t ) .  Exact solutions for both shearing and shear-free flow are constructed 
admitting two-parameter equations of state. A generalisation of Ritter’s theorem is proved 
which allows the shear-free collapse of index three polytropes. 

1. Introduction 

The spherical collapse of gas clouds is relevant to the understanding of star formation. 
Numerical studies (see Woodward’s (1978) review for references) generally show initial 
isothermal collapse of an optically thin outer region onto a central region which evolves 
sufficiently high opacity to form a core. The outer region then collapses onto the core. 

The stability of such collapse against fragmentation remains an important topic to be 
understood. Hunter’s (1967) studies of uniform clouds showed instability to frag- 
mentation. Since numerical work indicates that highly non-uniform collapse best 
models actual physical conditions, it is necessary to have exact non-uniform collapse 
solutions in order to study their stability. This work reduces the collapse problem to 
quadrature and presents a method for generating exact collapse solutions which satisfy 
all physical boundary conditions. In addition, the solutions generated here are free of 
singularities, while the known exact similarity solutions, such as those of Hunter (1977) 
and Cheng (1978), have singularities in their domain. 

Section 2 presents the dynamical equations for spherical collapse, and shear-free 
flow is considered in Q 3. A generalised version of Ritter’s theorem is given which 
allows spherical shear-free collapse for n = 3 polytropes. In Q 4 boundary conditions 
are given for all the physical variables. Exact solutions for shear-free collapse are 
constructed in § 5 .  The time development for collapse is discussed in Q 6, and examples 
of collapse with shear are given in § 7. 

2. Dynamics 

The spherical collapse of an inviscid, non-heat conducting gas obeys the momentum 
balance equation 
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0305-4470/80/093097 + 08$01.50 @ 1980 The Institute of Physics 3097 



3098 E N  Glass 

The mass function m(r, t )  must satisfy 

amlar = 4rr2p,  

am/at = -4rr2pu, 

where the continuity equation is the integrability condition for equations (2) and ( 3 ) .  It 
is usual to complete the system by specifying a barotropic equation of state p = p ( p ) ,  
thus providing four equations for the unknown p ,  p ,  U, and m. However, a collapse may 
have not a single equation of state, but rather a two-parameter family of them. This is 
reasonable for ideal systems which model actual physical conditions with viscosity, heat 
flow, and time varying opacity. 

The approach taken here is to specify m(r, t )  explicitly. This reduces the collapse 
problem to a quadrature since equation (2) yields p ,  equations (2) and ( 3 )  yield U, and 
then equation ( 1 )  requires a single integration. The form of m is constrained by the 
boundary conditions. 

3. Shear-free flow 

The velocity of spherical matter flow is given in the Eulerian frame by 

U = u(r, t)er, 

with acceleration 

aer = (& /a t  + uav/ar)e,. 

The rate of expansion of the flow is 

1 8  2 @ : = V . u = - z . - ( r  U), 
r ar (4) 

and the rate of shear is given byt 

The collapse will be shear-free if, and only if, 

for any H(t ) .  Shear-free flow is very restrictive and, in general, can represent only a 
portion of the more realistic collapse models (see McVittie (1956) for shear-free 
solutions with heat flow). It has been shown by Mansouri (1977) and Glass (1979) that a 
general relativistic perfect fluid in spherical shear-free collapse can never admit a 
barotropic equation of state p = p ( p ) .  The Newtonian case$ is less restrictive and 
allows a generalised version of Ritter's theorem (Chandrasekhar 1958, p 48)  which is 
given following the lemma. 

t Indices within parentheses indicate coordinate values with respect to standard r, 6, q5 spherical coordinates. 
$ The statement in Glass (1979) that the general relativistic proof holds in the Newtonian case is herein shown 
to be false. 
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Lemma. The general form of the mass function for spherical shear-free collapse is given 
by 

m = F[r/A ( t ) l ,  (7) 
where F and A ( t )  are arbitrary functions. 

Proof. The lemma follows upon requiring U = rH( t )  and then noting that equation (7) is 
the complete solution of 

am/at + rH(t)am/ar = 0, 

with H ( t )  = h'/A, and where overdots henceforth symbolise d/dt of time functions. 

Theorem. An inviscid, non-heat conducting gas sphere in shear-free collapse (or 
expansion) can have a polytropic equation of state which is either index three, or 
pressure-free uniform density. 

Proof. Assume shear-free flow with velocity v = ( h ' / A ) r ,  and equation of state p = ApY, 
A and y constant. From equation (7) of the lemma 

m = F ( 4 ) ,  := K ' r .  

The polytropic equation of state and equation ( 2 )  for the density are substituted into 
equation ( l ) ,  yielding 

In order that equation (8) have a well defined solution 

(a) A = -4klA-2, k l  constant; 

(b) - 3 ( y - 2 ) - 2 = 0 ,  when Ffcons tan t  (43) .  
Condition (b) implies 

or n = 3  4 
Y " 5  

F ( 4 )  two conditions must hold: 

( 9 )  

( y  = 1 + l / n  where n is the polytropic index). Equation (8) becomes 

Equation (10 )  admits three cases. 

time dependence is given by solutions of h' = klA 
(i) F = ( k 1 / 2 G ) 4 3 .  This solution implies p = p ( t )  with equation of state p = 0. The 

(ii) Ritter's case, kl = 0 with n = 3 .  The acceleration a = (A/A)r is zero in this case. 
(iii) kl # 0 with n = 3 .  A numerical solution exists for this case. 

+ k2. 

4. Boundary conditions 

Density : At the origin, the central density p(0 ,  t )  must be a positive function, bounded 
as t+Co for either collapse to a static state or oscillations about an equilibrium 
configuration. At the outer boundary, p must be zero or have some small positive value. 
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Pressure: The outer boundary of the collapsing gas is given by p(rb ,  t) = 0. The central 
pressure p ( 0 ,  t )  must be positive and bounded as t + 00. In addition aplar = Q(r) as 
r+O.  
Mass: In order that the density be finite (non-zero) at the origin, m = O(r3) as r + 0. The 
total mass of the system is conserved and so M := m(rb, t) must obey i lk= 0. 
Velocity: Equation ( 3 )  implies that z1 = Q(r) as r + 0 for consistency with the mass and 
density conditions. At the outer boundary, v(rb,  t) must be finite, less than c, and satisfy 

drb/dt = v(rb, t). 

5. Shear-free collapse examples 

5.1. 

Following the functional form given in equation (7) of the lemma, and with the central 
behaviour of m restricted to Q(r3), we choose 

( 1  1 )  m = 4.rrmoK3r3(1 +A-2r2)- ' /2 ,  

where mo is a positive constant and A (t)  is a function to be determined. Equations (2) 
and ( 3 )  yield 

p = 3moh -3(1 + A  -2r2)-5/2,  (12 )  

v = ( A / A ) r .  ( 13 )  

p = mohA-*(l + A-2r2)-3'2 + (2rGm;)AP4( l+  A-2r2)-3 t h (t), (14) 

Substituting (12) and (13 )  into equation ( 1 )  and integrating provides the pressure: 

where h( t )  is a function of integration. Since h(t) can be freely chosen, any function 
rb = rb ( t )  can be made to satisfy p(rb ,  t) = 0. Hence we examine the mass function to 
determine the boundary. m ( rb ,  t )  is constant for? 

rb = A (t), ( 1 5 )  

M := m(rb, t )  = J2.rrmo. 

with the result 

The boundary location ( 1 5 )  determines h ( t )  in equation (14), and so the pressure 
becomes 

p = mohA-2[(1 + A  -2r2)-3/2 - 2-3/2] t ( 2 ~ G m ; ) h - ~ [ ( l +  A-2r2)-3 - 2-3]. (16) 

In the limit A ( t )  + A. constant, the static solution is the n = 5 Lane-Emden polytrope 
with equation of state 

p = klp6/ '  - k2. 

5.2. 

We make the choice 

m = 4rmo[sin(A-'r)-A-1r cos(A-'r)]. (17) 
t Since m = m ( r / A ) ,  any choice rb = constmt ( A )  will make m(rb, t )  constant. Equation (12) does not allow a 
choice such that Pb = 0 so, for simplicity only, we choose rb = A .  
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Equations ( l ) ,  ( 2 )  and (3) yield 

p = m~A-~[sin(h-'r)]/A-'r, 

v = ( i / A ) r ,  

The mass function is constant, and P b  = 0, for 

rt, = rrA(t), 

which yields M = 4 r 2 m o  and determines h ( t )  such that 

The static limit A ( t )  + A. is the n = 1 Lane-Emden polytrope with equation of state 

p = (27rGA;)p'. 

6. Time development 

For collapse to static equilibrium, a generic time profile is sketched in figure 1. At t = 0, 
the system is gravitationally bound and starts collapse with zero velocity and inward 
acceleration. In order for the velocity to reach zero again, it must have an extremum at 
which time the acceleration is zero. Static equilibrium is achieved only when the 
velocity and acceleration are simultaneously zero, and so the acceleration must have an 
outward maximum before its second zero. It is clear that the outward maximum of 
acceleration can be produced only by having the pressure overshoot its final equilibrium 
value. 

More complicated time profiles are easily imagined: the acceleration and velocity 
curves may cross any number of times before achieving a simultaneous zero, or the 
system may settle down to steady oscillations about some equilibrium configuration 
with acceleration and velocity never finding a simultaneous zero. Two extreme cases 

t l  

I 

f- 0 

Figure 1. Plot of acceleration and velocity versus time (at fixed r ) .  
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would be (a) continued collapse beyond Newtonian densities to the relativistic regime, 
and (b) a single 'bounce' followed by unlimited expansion. These extreme cases will not 
be considered here. 

In the shear-free examples above, U = (A/A)r and a = (A/A)r, so it is straightforward 
to follow the velocity and acceleration from A and A. We write down a A ( t )  correspond- 
ing to the case sketched in figure 1: 

(23) A ( t ) = A o ~ - ~ ( k r ~ - ~ r  1 2 2  t + g ~ t  2 3 -51 1 4  ), 

where k ,  A. and r are positive constants. 

At t = 0: A = kAo, A = 0, = -AoT-~, T= ~ A o T - ~ .  

At t = r :  A =(k-&)Ao ,  A = A  = O ,  / i"=-2hO~-~.  

It is instructive to follow the behaviour of the central pressure p c  := p ( 0 ,  t )  for both 
examples 5.1 and 5.2 above. 

From equations (16) and (22) 

p c  = a (A/A 2, + P I A  

where (a ,  p )  are positive constants which take on different values corresponding to 
examples 5.1 and 5.2, 

eC= a[(~jA2)-2(AA/A3)]-4PA/A5. 

At t = 0, p c >  0, and at t = r,  eC< 0. 
The central pressure increases monotqnically to a maximum, and then falls to its 

equilibrium value. The time at which (pc)max is achieved depends on the particular 
model values (a ,  p )  and is not simultaneous with (A)max.  

7. Collapse with shear 

7.1. 

The functional form given in equation (7)  is broken with the choice 

m =$"n-3r3(l +A62r2)-3/2, (24) 

p = moA-3(l +A62r2)-5'2, (25) 

Equations (1)-(3) yield 

U = (,i/A)r(I +A02r2), (26) 
p = mo{[2A2A-5r2+(A'/A)'A-3A~](1 +AG2r2)-1'2 

-5A'2A-5Ag(1 +AG2r2)1/2+~.rrGmoA-6Ag(1 +A62r2)-3}+ h ( t ) .  (27) 

rb = A (I - A  02A 2)-1/2, 

The boundary is obtained from equation (24) by demanding m (rb, t )  = constantt: 

(28) 

t The condition drb/dt = U(ibr t) is automatically satisfied. 
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which yields M = m(rb, t )  =$?rmo. h ( t )  in equation (27) is fixed by the condition 

h( t )  = -m0[h"A-~(2 - 5A-'A ;)(1 - A  ;'A ')-I/'+ (A'/A)'AV3A ; (1 - A~'A')'/' 

P(rb, t )  = 0:  

(29) + $ ? r ~ m o ~ - 6 ~ ~ ( i - ~ o  - 2  A 2 ) 3 I. 

The acceleration is given by 

a = [(A/A)+(A/A)23A~2r2]r(l +A;'r'), 

and so it is clear that the time profile given by equation (23) can be applied to this 
example of shearing collapse. The static end state is again the n = 5 polytrope. 

7.2. 

A different example which does not collapse to a static polytrope is given by 

(30) m = 4 3 ~ r r r ~ r : A - ~ r ~ ( l  + A - ' r ) - 3 ,  

p = mor:A -6( 1 + A -'r)-4, (31) 

v = (A/A)r(2+A-'r), (32) 

where rb = A'(r0-A)-'. Hence A ( t )  < ro for this model. Equations (1)-(3) yield 

p = mor&i-6[$(A/A)(l +A-'r)-3(3r2+6Ar +2A2) 

- (A/A)'(l + A - ' r ) - 3 ( A 2 +  3Ar + 2r') 

+ ( i / A ) ' ( l +  A-'r)-'(2A2 +6Ar + 3r') - 2(A/A)'A2 ln(1 + A - ' r )  

+ & ~ r G m ~ r ~ A - ~ ( l  +A- ' r ) -6 (1  +6A- 'r)]+h(t) ,  (33) 

where h ( t )  is determined from p ( r b ,  t )  = 0. The time profile given in equation (23) can 
also be applied to this example. 

The equation of state in the static limit is given by 

p = k l p 3 l 2  + k2p  5/4  - k3. 

8. Conclusion 

It has been shown that by specifying the mass function, both shear-free and shearing 
collapse can be described. Two of the examples given had static end states correspond- 
ing to n = 1 and n = 5 Lane-Emden polytropes. 

The models considered here represent the opposite end of a collapse model 
'spectrum' from those models in which a single barotropic equation of state is fixed for 
the entire collapse. The freedom in specifying the time profile A ( t )  is allowed by having 
the systems collapse through a two-parameter family of equations of state. It is possible 
that some of the dynamically valid solutions will be excluded when the laws of 
thermodynamics are imposed upon assuming local thermodynamic equilibrium. This 
work is in progress. 

For the purpose of investigating the stability of collapse against fragmentation, the 
exact models provided here, free of singularities in their entire domain, represent a 



3104 E N  Glass 

reasonable starting point. Better models might be found if one could take a numerical 
collapse solution, fit an analytic function m(r, t )  to it, and then construct the remainder 
of the solution by the techniques of this paper. 
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